National Air Quality Forecast Capability: Developmental expansion to Hawaii and Alaska

Jianping Huang NOAA/NCEP/EMC support, SAIC

Mar 17, 2010 2010 National Air Quality Conference, Raleigh, NC

Co-Authors

- Paula Davidson and Ivanka Stajner (NWS Managers, the National Air Quality Forecast Capability).
- ARL for leading the developmental expansion and providing PreMAQ, CMAQ and emission files: Daewon Byun (team leader), Pius Lee, Rick Saylor, Daniel Tong, Hyun-Cheol Kim, BinYu Wang, Hsin-Mu Lin, Fantine Ngan, and Tianfeng Chai.
- NCEP colleagues: Jeff McQueen (team leader), Youhua Tang, Marina Tsidulko, Bill Lapenta, Geoff DiMego.

Outline

- The National Air Quality Forecast Capability
- Model configurations, emissions and lateral boundary conditions (LBCs)
- Influence of LBCs on surface O₃ (1-hr, 8-hr max) predictions for HI and AK
- Verification of Met, 1-hr and 8-hr max O₃ predictions for HI and AK
- Summary

National Air Quality Forecast Capability

Major Model Components: Ozone Predictions

Model Configurations

CMAQ

- CB05 gas-phase
- Aero-4 aerosol chemistry
- Domains
 - HI: 80 x 52 grid cells
 - AK: 199 x 163 grid cells
- Horizontal resolution: 12 km
- Vertical level: 22 layers
- Meteorological inputs
 - NAM WRF- NMM 12 km
- Emissions
 - NEI 2005
 - BEIS V3.3
 - LULC
- Lateral boundary conditions
 - GEOS-Chem precursors
 - HI: Hilo monthly mean ozonesonde

Terrain height (m)

Land-use category

NO and VOC emission rates

NO (mole/s) at 01 UTC 03/08/2010

VOC (mole/s) at 01 UTC 02/27/2010

VOC (mole/s) at 01 UTC 03/08/2010

Lateral boundary conditions

1) Monthly ozone **sonde** climatology computed for 1982-2007. Data from: ftp://ftp.cmdl.noaa.gov/ozwv/ozone/hilo/hilosum_lvl/ (for HI only)

GEOS-Chem: a global 3-D atmospheric chemistry model driven by assimilated meteorology from the Goddard Earth Observing System Version 4 (GEOS-4) (Bey et al., 2001; http://acmg.seas.harvard.edu/geos/index.html).

•2.0° latitude x 2.5° longitude resolution with 50 levels.

LBCs for 41 chemical species including: NO₂, O₃ (for AK), ISOP, ASO4J, ANO3J, AORGBJ.

2) Static climatological LBCs

O₃ lateral boundary conditions: HI

Comparison of ozone LBCs from ozone sonde climatology with static ozone LBC

Influence of LBCs on ozone predictions: HI

Monthly mean for Feb 2010

(sonde – static) / static * 100%

Ozone LBCs for AK (March)

Influence of LBCs on ozone predictions: AK

Averaged over Mar 1-8, 2010

(GEOS-Chem – static) / static * 100%

Verification of Hawaii region met fields: HI

1-hr and 8-hr max ozone spatial patterns

Verification of 1-hr average ozone: HI

Verification of 8-hr average ozone: HI

Sonde LBC vs. Static LBC: HI

Summary

- The National Air Quality Forecast Capability is being extended to provide numerical guidance for HI and AK ozone predictions.
- Implementation of experimental ozone predictions is targeted for HI in March 2010 and for AK in May 2010.
- HI 1hr and 8hr max ozone predictions have been improved with the new LBCs from GEOS-Chem and ozone sonde data.
- HI 1hr and 8hr average ozone predictions capture observed daily maximum well, but not the observed diurnal variability.
 The comparison is limited to a single available ozone site.

Acknowledgement

 Prof. Daniel Jacob (Harvard Univ.) for providing the GEOS-Chem simulation results.